Archetypes for Reliable Systems

Steve McGhee Reliability Advocate, SRE Google

GOOGLE CONFIDENTIAL

This material is highly confidential and subject to our non-disclosure agreement Do not share or forward

The information contained herein is intended to outline general product research and direction and should not be relied upon in making purchasing decisions nor shall it be used to trade in the securities of Alphabet Inc. The content is for informational purposes only and may not be incorporated into any contract. The information presented is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Any references to the development, release, and timing of any features or functionality described for these services remains at Google's sole discretion. Product capabilities, timeframes and features are subject to change and should not be viewed as Google commitments.

Sabre Disclaimer

The purpose of this workshop is to educate and share best practices.

Sabre has chosen and implemented a unique chain of tooling for GCP Cloud Foundations and the services demonstrated here may or may not yet fulfill Sabre's enterprise requirements. Please refer back to the Sabre Cloud foundations team for legitimate use cases for an unenabled service or if you have any questions.

The products mentioned during the workshop can only be used once approved by your Cloud Foundations team.

Please don't expect an accelerated evaluation of new services demonstrated in this workshop.

If it's in preview, it may be longer than normal to have access in sandbox or higher environments.

GCP enabled services list at Sabre:

https://sabrenow.sharepoint.com/teams/cloud-coe/Lists/GCP%20Vetted%20Services/AllItems.aspx?env=WebViewList

Who are we?

Steve McGhee

Reliability Advocate

Google

Ameer Abbas

Product Manager Google

Ag	en	da

	1	1
L	J	L

02

03

04

Reliability Terms

Application Archetypes

SLO Math

Reliable Architectures

Can you build 99.99 services

on

99.9

infrastructure?

Pyramids of Reliability

software inherits reliability from base

software improves availability

software inherits reliability from base

software improves availability

Application Archetypes

Archetypes to Reliability

Archetype - Abstract model

Replication, redundancy, RTO/RPO, DR, cost

- Architecture Products and Service design
 K8s, Mesh, CICD, DBs, Storage and backup
- App/Service & Footprint always changing
- SLOs expectations, guardrails

Platforms and Applications

Platform

Product (Internal)

Applications

Product (External)

Platform Applications

Product (Internal) Product (External)

SLO

(Reliability)

5 Application Archetypes

5 Application Archetypes

bit.ly/cloudarchetypes

Anna Berenberg, Brad Calder

ACM Computing Surveys, vol. 55 (2022), pp. 1-48

Archetype 5.2: Global Anycast with regional isolated stacks and global database deployment model

Archetype 2.2

Active Passive Zones

- Deploy all services of app to two zones in one region
- Data in SQL with a <u>read replica</u>
- L4 LB with one backend group
- Survives zone failure. Does not survive region failure.
- Fail-Ops: Change LB backend, <u>promote</u> read replica
- Cost: 2x serving + 2x data (1 replica)
- **Complexity**: Low
- App Refactoring: None (lift and shift)
- Type: COTS, licensing

Archetype 3.1

Multi Zonal

- Deploy all services of app to all three zones in one region
- Data: Use HA SQL
- Use Global LB or Reg LB with 3 backend groups
- **Survives zone** failure. Does not survive region failure.
- Fail-Ops: Initiate DB failover
- Cost: 1.5x serving + 2x data (HA SQL)
- Complexity: Medium
- App Refactoring: Low (multi instance)
- Type: Web services

Archetype 3.2

Active Passive Region

- Deploy all services of app to all three zones in each of two regions
- **Data:** SQL with cross-region replication
- **DNS** points at one LB (until disaster)
- Survives zone and region failures
- Fail-Ops: No action for zone failure.
 - Update DNS to point at standby LB
 - Cross region DR failover process for DB
- Cost: 3x serving + 2x data (HA SQL)
- Complexity: Medium
- App Refactoring: Medium (multi instance, multi regional data)
- Type: HA web services

Archetype 4.3

Isolated Regions

- Deploy all services of app to all three zones in each of two regions
- Data: Spanner or CockroachDB
- **DNS** points at two Regional LBs
- **Survives zone and region** failures. No impact for ½ consumers. Possible manual failover
- Fail-Ops: No action for zone failure. Optional regional failover like Arch 3.2
- Cost: 1.5 cost per region for zone failure
- Complexity: Medium/High
- App Refactoring: Medium (multi instance, multi regional data)
- Type: Regulated HA services

Archetype 5.2

Global

- Deploy all services of app to all three zones in each of two or more regions
- Data: Spanner or CockroachDB
- Global LB points at regional backend groups
- Survives zone and region failures
- Fail-Ops: None
- Cost: N+m cost modelling. Global DBs are more expensive
- **Complexity**: High
- App Refactoring: High (multi instance, global DBs)
- Type: Global consumer services

How to use Archetypes?

01

Services can be deployed to a single archetype

Service A

How to use Archetypes?

01

Services can be deployed to a single archetype

02

Application can use services across

multiple archetypes

Service A

How to use Archetypes?

01

Services can be deployed to a single archetype

02

Application can use services across multiple archetypes

03

Applications should be designed for graceful degradation

Service A

SLOs and SLIs

SLOs in one slide

A ratio-rate of good/total, measured over a time duration.

If too much non-good, for too long, tell a human.

SLI is the squiggly line

SLO is the straight one

Area is time exceeding SLO

SLI

Quantitative measure of some aspect of the level of service

aka

latency, throughput, availability

SLI

SLO

Quantitative measure of some aspect of the level of service

aka

latency, throughput, availability

a target value or range of values for a service level that is measured by an SLI

aka

99% of Get RPC calls will complete in less than 100 ms

Intersection (or serial)

0.999 x 0.999 x 0.999 x 0.999

99.6% SLO

Union (aka parallel)

1 - (0.001) 4

99.99999999% SLO

or 11 nines

Building Reliable Platforms on Kubernetes

Archetype 2.1 Single zonal GKE cluster with Cloud SQL

Archetype 2.1 Single zonal GKE cluster with Cloud SQL

0.9999 x 0.995 x 0.9995

99.44% LIMIT

Archetype 2.2 Active Passive Zones

- Deploy all services of app to two zones in one region
- Data in Cloud SQL with a <u>reac</u> replica
- L4 LB with one backend group
- Survives zone failure. Does not survive region failure.
- Fail-Ops: Change LB backend promote read replica
- Cost: 2x serving + 2x data (1 replica)

Archetype 2.2 Active Passive Zone with Cloud SQL HA

 $0.9999 \times 0.999975 \times 0.99999975$

99.98% SLO

Archetype 2.2 Active Passive Zone

 0.9999×0.99997

99.98% LIMIT

Archetype 3.1 Multi Zonal

- Deploy all services of app to al three zones in one region
- Data: Use HA Cloud SQL
- Use GLB or RLB with 3 backend groups
- Survives zone failure. Does not survive region failure.
- Fail-Ops: <u>Initiate DB failover</u> (testable)
- Cost: 1.5x serving + 2x data (SQL HA)

Archetype 3.1 Multi Zonal with Cloud

0.9999 x 0.999999875 x 0.99999975

99.99% LIMIT

Archetype 3.2 Active Passive Region

- Deploy all services of app to all three zones in each of two regions
- Data: Cloud SQL with <u>cross-region</u> replication
- Cloud DNS points at one LB (until disaster)
- Survives zone and region failures
- Fail-Ops: No action for zone failure.
 - Update DNS to point at standby LB
 - CIUSS IEGION DIVIGIIOVEI

Archetype 3.2 Active Passive Regions with Cloud SQL HA

~1 x 0.99999999 x ~1 x ~1

99.99999% LIMIT

Archetype 4.3 Isolated Regions

- Deploy all services of app to all three zones in each of two regions
- Data: Spanner or CockroachDl
- Cloud DNS points at two Regional LBs
- Survives zone and region failures
 No impact for ½ consumers.
 Possible manual failover
- Fail-Ops: No action for zone failure. Optional regional failover like Arch 3.2

Archetype 4.3 Isolated Regions with Cloud Spanner

~1 x 0.99999999 x ~1 x 0.99999999

99.999998% LIMIT

Archetype 5.2 Global

- Deploy all services of app to all three zones in each of two or more regions
- Data: Spanner or CockroachDE
- Global LB points at regional backend groups
- Survives zone and region failures
- Fail-Ops: None
- Cost: N+m cost modelling. Global
 DBs are more expensive
- Complexity: High

Archetype 5.2 Global with Cloud Spanner (Multi regional)

0.9999 x 1 x 0.99999

99.99% LIMIT

Application with Services using multiple Archetypes

Start with Archetypes

Conclusions

 Compose Services into Applications that can degrade gracefully

 Develop resilient teams robust platforms reliable products

Please scan the QR Code above to leave feedback on this session

Thank you