
Building Reliable
Services on the Cloud

smcghee@google.com

The Report

Authored by Phillip Tischler
with Steve McGhee
and Shylaja Nukala

smcghee@google.com
Reliability Advocate, SRE

10+ years in SRE
Now: helping cloud customers

https://info.blameless.com/oreilly-building-reliable-services-on-the-cloud

mailto:smcghee@google.com
https://info.blameless.com/oreilly-building-reliable-services-on-the-cloud

TOC

1. Define objectives

2. Identify the dependencies

3. Architect your service

4. Avoid common failure modes

0. Motivation

Outages will erode trust and motivate users to adopt alternatives
Data loss is likely to destroy trust

Google has designed, built, and operated reliable services on the
cloud for decades. This is what we've learned.

Here, learn how to build similarly reliable services as
a software engineer, site reliability engineer, or cloud engineer.

Who?

You!

Why?

What?

1. Define Your Objectives

Reliability is a non-functional requirement, and it has gradations.

➢ You can have "no" reliability
➢ You can have "some" reliability
➢ You can have "too much" reliability (because $$$)

So how do we decide "how much" to invest?

SLOs

Service Level Objectives (SLOs)

By using SLOs, you can choose and
enforce your acceptable levels of
reliability.

Choose SLOs based on user or
business needs.

Different parts of your system can
have different reliability objectives.

Rule of thumb: every extra 9 costs
~10x what the last one did.

https://cloud.google.com/architecture/defining-SLOs

https://cloud.google.com/architecture/defining-SLOs

Understand
Failure Domains
and Redundancy

A failure domain is a group of resources
that can fail as a unit, making services
deployed within that unit unavailable.

eg: a Host, Rack, Row, Cluster, Datacenter, or
Campus

Push changes into smaller failure domains,
try not to span failure domains.

Redundancy across failure domains
provides resilience, at an overhead.

N+2 redundancy provides for two
independent failures (one planned, one
unplanned)

Consider
Scaling

Input-to-consumption relationship is often
expressed in algorithmic "Big O" notation:
O(1), O(log N), O(N), O(NlogN), O(N^2), O(N^N)

Changing a system to a lower asymptotic
complexity class can have dramatic
improvements

Scaling can be done by increasing the capacity
of a resource (vertical scaling),

or by using more instances of a resource
(horizontal scaling).

2. Know Your Dependencies

Once you have the goals down, it's time to build.

Our building blocks have limitations, even in Cloud!

First, Cloud services and resources align with scopes:

"Lower" scopes (zone) have lower
availability, but there are far more
of them!

Align Failure Domains

"Stacks" of services should align in
terms of failure domain.

Misalignment can cause
coordinated failure (which is bad)

If you align your services, the loss of
a service in one failure domain will
only affect the stack in that failure
domain.

Note the stack itself doesn't change,
just the deployment archetype did.

 “Deployment Archetypes for Cloud Applications” B. Calder, A. Berenberg
https://arxiv.org/pdf/2105.00560.pdf

https://arxiv.org/pdf/2105.00560.pdf

Consider Cloud
Service SLOs

When composing Cloud services,
consider the SLOs of each service
you're using and compare it to the SLO
you intend to hold yourself to.

How do you depend on these?

Intersectional dependency:

★ All must be up

Union dependency:

★ At least one must be up

Explicitly consider your Control/Data
planes separately!

Choose Services to Depend On

Compute:

● Use containers! Keep them small, start with serverless.
● Optimize for startup time, implement ready/live checks, terminate gracefully.

Network:

● Use provider's CDN, Load Balancers, private WANs, service meshes

Storage:

● Consider object stores, NoSQL databases, multi-regional database services
● Use Publish/Subscribe service to decouple readers/writers, improve retries
● Consider MapReduce/Flume for high volumes of data

3. Architect Your Service

★ Decompose a larger system into smaller components (Services)

★ Use well-defined interfaces and loose-coupling (APIs)

★ So the aggregate system behaves and performs as desired (Scaling)

Understand Service Evolution:
Tiers, SOA

Understand Service Evolution:
Microservices

Choose
Synchronous /
Asynchronous

Synchronous operations:
- client waits for the service
- strongly/causal consistency
- tight coupling of server/client

Asynchronous operations:
- client does not wait
- operation completes independently
- looser coupling
- client not blocked

Consider using a Pub/Sub queue:
- consider idempotency to dedupe retries
- might provide: at-most-once, at-least-once, or
exactly-once execution

Utilize Batch
Computing

When large computations or large datasets are
processed all at once.

can be more efficient through:

● global operations like external sort and join
● use cheaper preemptible compute

Understand
Horizontal vs
Vertical Scaling

Vertical scaling can gain more
efficiency, to a limit. Well-controlled
scaling can have controlled costs.
Each node has a fixed cost.

Horizontal scaling can allow more
traffic and storage, quickly. Rapid
growth and large geographical
spread work better with horizontal
scaling.

Utilize algorithmic sharding and
replication to allow for automated
growth.

Load Balancing

Automated deployment and
autoscaling require dynamic load
balancing.

Simple "waterfall" load balancing for
homogeneous services with stable,
consistent requests.

Some services may require knowing
the "cost" of a query, as well as
"capacity" of a server.

Utilization-based balancing might
measure the servers directly and infer
their capacity via other metrics.

4. Avoid Common Failure Modes

Resilience is not about building a perfect system, but designing methods for
handling issues like:

- Bad Changes
- Cascading Failures
- Thundering Herds
- Hotspots
- Data Loss or Corruption

Avoid Bad Changes

Change
Supervision

Monitor services to detect faults,
including dependencies and
dependents for end-to-end coverage.

- Alert on SLO burn
- Monitor service health metrics
- Add synthetic end-to-end probes

Progressive
Rollout

Make changes slowly across isolated
failure domains so issues can be
detected and mitigated before having a
large impact.

- Create small, independent failure
domains
- Update those domain one at a time

Safe & Tested
Mitigations

Have rapid, low-risk, and tested
mitigations like change rollback and
automatically execute them on issue
detection.

- Apply well-tested mitigations when
failures are detected
- eg: immediate change rollback

Defense in
Depth

Independently verify correctness of
changes at each layer of the stack for
multiple defenses against failure.

- Deploy to dev, staging, then prod
- Use IaC and 2FA/MFA to improve
confidence in changes

Utilize
Gradual Rollouts

A deeper look into a model for gradual rollout
of a large service:

- start small (canary)
- spread change across time (hour, day)
- spread change across space (regions)
- don't alter two regions (failure

domains) at the same time

Avoid
Cascading Failure

Avoid the model where failure of one
component results in a retry to
another component, which then fails
in turn.

This can be especially nefarious in
capacity caches.

Mitigations may include explicit
dropping of excessive traffic while
more capacity can be made
available.

See also: Cost Modeling, DoS
protection, Load Shedding, Quotas,
Criticality, Autoscaling, Capacity
Planning.

Beware
Thundering Herds

Sometimes, a "wall" of traffic can hit a
service at once.

- Mobile outage resuming service
- External events: World Cup
- Synchronized cache expiration
- Your own marketing!

These can often be too fast for
autoscaling or caching to be of use.

Mitigate instead via:

- Exponential backoff at client
- Jitter (added small, random

delay)
- Drop excess traffic

Prevent Hotspots

A hotspot is where a subset of servers
receive a disproportionate amount of
load and subsequently become
overloaded, despite over‐ all service
having spare capacity.

eg: popular new app is released

Mitigation: "gating" via batched
request handling at multiple points in a
hierarchy

Ensure Data Integrity

SLOs may define how a service is
expected to run, but you should also
model how you expect to handle its
data.

RPO = Recovery Point Objective

RTO = Recovery Time Objective

Know the RPO/RTO of your data storage services to ensure they match your needs

Utilize snapshots, differential backups, and full backup functionality

Test your point-in-time recovery as well as end-to-end full recovery process

Deploy probes or synthetic monitors to detect loss or corruption

Start Your Quest!

● Start with an Archetype
○ set expectations of reliability
○ choose an appropriate model

● Build an Architecture
○ know your failure domains
○ choose appropriate dependencies

● Write your Code
○ decouple via APIs
○ choose synch/asynch/batch
○ consider how you will scale up

● Enforce your SLOs
○ avoid known failure modes
○ build mitigations into your system
○ practice

Fin

* big thanks to Phil and the team at Google for writing the report
and making all these great diagrams!

