
SLO Math
Steve McGhee, Google
San Luis Obispo SLO, CA

to

https://www.youtube.com/watch?v=-lHPDx90Ppg

https://www.youtube.com/watch?v=-lHPDx90Ppg

% whoami

➔ Google SRE, SRM: Android, Fiber, YouTube, Cloud

➔ Infrastructure Architect - New Platform, old Product - Modernize?

➔ Solutions Architect - DevOps, SRE, Anthos - Modernize!

➔ Reliability Advocate - Internal + External

Preamble

What I hope you already know: What an SLO is.

What I hope you'll learn: How to use SLOs. How not to use SLOs.

Heads up: Math Ahead (see title). A bit of probability.

"The Front Door SLO"

Focus on the customer's happiness.

➔ Available (enough)
➔ Fast (enough)
➔ Complete (enough)

Don't think about the serving system (yet).

Meet Expectations
Don't Expect Perfection

https://unsplash.com/photos/QR_vT8_hBZM

Deeper SLOs

"But it's more complicated than that, Steve"

I know.

"My service depends on other teams"

I know.

https://unsplash.com/photos/oEtQ0C6HS2I

Bad Naive Math

my users expect 99.0%

so my webserver should be 99.9%

so my database should be 99.99%

so my infrastructure should be 99.999%

… but what if i have more layers? 🤯
https://unsplash.com/photos/3kZpELkaxHc

Context: The Pyramids

Component-level reliability:

- solid base (big cold building, heavy
iron, redundant disks/net/power)

- each component up as much as
possible

- total availability as goal
- "scale up"

Scalable reliability:

- less-reliable, cost-effective base
- "warehouse scale" (many machines)
- software improves availability
- aggregate availability as goal
- "scale out"

What Else Has Changed?

Good Math needs a Model

First we need a baseline model of a
Cloud-based distributed system.

We need to allow for:

- Scalability Horizontal, Vertical)
- Sharding, Partitioning
- Replication, Load Balancing

If this stuff is new to you, don't fret.)

Probability, real quick

Let's call rolling a "1" an outage.

probability of having an outage:
⅙ = 0.1667

probability of NOT having an outage:
⅚  0.833 ← "availability SLO!"

Now it gets weird:

Four 6-sided dice: (⅚)^4 = 0.482

Four N-sided dice: (N-1)/N) ^ 4

M arbitrary-sided dice:
(N

1
 - 1/N

1
) * (N

2
-1/N

2
) * (N

M
-1/N

M
)

https://unsplash.com/photos/QuP5RL_E5oE

eg: two 6-sided, one 10 sided, one 20 sided dice:
5/6 * 5/6 * 9/10 * 19/20 = .83 * .83 * .90 * .95 = .59

"you'll never do as well as the
worst case single throw"

Serial Services

Load Balancer

svc A

svc B

svc C

99.9%

99.9%

99.9%

99.9%svc D

What if you have services that depend on each other,
in a "straight line"?

3 nines @ depth 4 gets us "2.6" nines:
(0.999, 0.999, 0.999, 0.999) = 0.999^4 = 99.6%

SLO^depth

So what? Your architecture choices can
have more of an impact than the SLOs of
your dependencies.

Parallel, Required Services

N services and your app is the composition of all of
them, they all still need to be up!

One failing is just as bad as the Serial configuration.
oof.

We're still at:

SLO^depth

Load Balancer

svc A svc B svc C svc D

99.99% 99.9% 99.999% 99.9%

Or if we have "different-sided dice" it is:
(0.9999 * 0.999 * 0.99999 * 0.999) = 99.789%

Redundant Services!

What if you have independent copies of the same service? As
long as one is up, you're happy! Now we're talking!

Now your outage only has the probability of all N services failing
at the same time. (ahem: presuming automatic retries)
Our failure_ratio is just: 1  SLO

Given 4 dice, you have to roll four ones in order to fail.
The odds of this are: 1/6  1/6  1/6  1/6 = 0.00077

1 - failure_ratio ^ redundancy

Load Balancer

svc A svc A' svc A'' svc
A'''

99.9% 99.9% 99.9% 99.9%

1 - (0.1% * 0.1% * 0.1% * 0.1%) =
1 - .001^4 = 99.99999999...% (12.6 nines!)

Set Theory of SLOs

Intersection Availability
per Number of Components

Union Availability
per Number of Components

Component
Availability 3 10 100 2 3

99% 97% 90% 37% 99.99% 99.9999%
99.9% 99.7% 99% 90% 99.9999% 99.9999999%
99.99% 99.97% 99.9% 99% 99.999999% 99.9999999999%
99.999% 99.997% 99.99% 99.9% 99.99999999% 99.9999999999999%

Intersection availability is where all dependencies must be available.
➔ SLO ^ depth
➔ 0.999 ^ 3 = 99.7%

Union availability is where at least one of the dependencies must be available.
➔ 1-(1-SLO) ^ redundancy
➔ 1-(1-0.999) ^ 3 = 99.9999999%

Bottlenecks

So why aren't we swimming in nines?

● Network, Load Balancing is a nines-lynchpin. Hard to fix. Hard to own.
● Changes, Mistakes, Churn, Shortcuts.

○ Own the end-to-end SDLC, every part matters.
● Shallow Understanding / Striving for Over-Simplified Learnings

○ (the details of an outage matter)
○ (in fact, they're all that matters)

Now What?

1 don't fret about the downward implications of your SLO choices.
⟶ consider your customer's happiness first and foremost
a) set customer appropriate goals and your stack will work to meet them
b) use outages to understand the details of resilience engineering needed

2 help infrastructure teams understand the new world:
resilient software can make infra easier
a) it's a team effort, own the whole problem

Two Usable Models
Full Mesh

Load Balancer

svc A

svc B

svc C

99.9%

99.9%

99.9%

99.9% svc D

svc A'

svc B'

svc C'

svc D'

svc A''

svc B''

svc C''

svc D'''

svc
A'''

svc
B'''

svc
C'''

svc D'''

Stacks

Load Balancer

svc A

svc B

svc C

svc D

svc A'

svc B'

svc C'

svc D'

svc A''

svc B''

svc C''

svc D'''

svc
A'''

svc
B'''

svc
C'''

svc D'''

Gnarly Details

Not recommended: YOLO, "megalith"
Maximum Resilience: full-mesh.

Costs:
- more computers, storage!
- operational complexity! (stacks simpler)
- consistency, sharding, replication issues

Further Reading:
- Failure domains (physical, logical)
- Regions/Zones default FDs
- Failure Modes
- Graceful degradation

https://unsplash.com/photos/eCfCIwtKdsg

Wait, that's Way Too Simple / False!

Correct! Some Fallacies (so far):

1 SLOs must get tighter with depth

2 I actually control the entire stack

Solutions:

1 Resilience via Engineering! You
can build more reliable things on
top of less reliable things

2 Do you own the loadbalancer?
The mobile tower? The battery?

This Bears Repeating

You can build
more reliable things

on top of
less reliable things

a simple example: RAID. see: The SRE I Aspire to Be, @aknin SREconEMEA 2019

Closing

A colleague asked me:

"When should you define an SLO for a system vs it's
components?"

I hope what you take away from this talks is:

You should design a system at "the front door" but it's a
common mistake to follow Conway's Law and define it at
team boundaries, then get frustrated by the "bad math" that
ensues.

Build a platform that lets you focus on customer happiness.
All else will follow.

https://unsplash.com/photos/dBaz0xhCkPY

https://unsplash.com/photos/D-jLxBtEwaA

THE END

WE DID IT

Error budget burn-down chart

Percent of Service Unavailable

0.1% 1% 10% 100%

Availability SLO

90% Forever Forever Forever 9d

99% Forever Forever 9d 21h

99.9% Forever 9d 21h 2h

99.99% 9d 21h 2h 12m

99.999% 21h 2h 12m 1m

DR Math

"Holdback" = 1/N

As you increase N

DCs can each run "hotter" now (better
utilization)

Better global spread should also result
in better latency (faster experience) to
global users

If each DC is totally independent, your
availability "nines" improve dramatically
(and are actually capped by the
loadbalancer/network),

DC1 DC2 DC3 DC4

