
Proprietary + Confidential

smcghee@
go/smcghee Jan 2025Reliability

Advocacy

SLOs are a Lot
go/slos-are-a-lot

http://go/slos-are-a-lot

Proprietary + Confidential

Super Abstract

Slightly Less Abstract

Abstract Examples

Philosophy Again

Some Actual Examples

Wrap-up, Links

Q&A

01

02

03

04

05

06

07

Agenda

Confidential + Proprietary

% whoami

SRE on: Ads, Search, Gmail, Android, Fiber, YouTube, Cloud

Steve McGhee
Reliability Advocate

@stevemcghee

󰘩

Proprietary + Confidential

Super Abstract
01

Proprietary + Confidential

Dev

IT

Dev

IT

Worked great, for
a long time

Common
mental model

Cloud is here,
though.

(because scale, mostly)

((You can't buy more nines
for your VM in Cloud))

Proprietary + Confidential

Dev

IT

Dev

IT

Worked great, for
a long time

Common
mental model

Cloud is here,
though.

(because scale, mostly)

((You can't buy more nines
for your VM in Cloud))

Proprietary + Confidential

legacy

cloud

Infrastructure changes can't fix the app.

Proprietary + Confidential

Effort
(cost)

Reliability (9’s)

Continuum of platforms and complexity (reliability example)

This Bears Repeating

You can build
more reliable things

on top of
less reliable things

a simple example: RAID. see: The SRE I Aspire to Be, @aknin SREconEMEA 2019

Proprietary + Confidential

Slightly Less Abstract
02

Confidential + Proprietary

SLOs in one slide

A ratio-rate of good/total, measured over a time duration.

If too much non-good, for too long, tell a human.

SLI is the squiggly line

SLO is the straight one

Area is consumed Error Budget

Glossary of Terms

CUJ SLI SLO Error Budget SLA
critical user
journey: specific
steps that a user
takes to
accomplish a goal

service level
indicator: a
well-defined
measure of
success

service level
objective: a
top-line target for
fraction of
successful
interactions

proportion of
“affordable”
unreliability; one
minus the SLO

service level
agreement:
business
consequences

User interacts with Service
to achieve Goal

Critical User Journey

Service Level Indicators (SLI)
 Quantitative and carefully-defined as seen in the following equation:

 Monitoring systems may (and should) capture a large number of potential SLIs,
but most are not immediately useful to back SLOs

SLI :
good events
valid events × 100%

Request / Response Availability
Latency
Quality

Data Processing Coverage
Correctness
Freshness
Throughput

Storage Throughput
Latency

SLI Menu

0 ms 300 ms200 ms

Objective
🎯

Agreement
🖋

Customer

“HTTP GET / …”

“Ugh”

SLO vs SLA

"The Front Door SLO"

Focus on the customer's happiness.

➔ Available (enough)
➔ Fast (enough)
➔ Complete (enough)

Don't think about the serving system (yet).

Meet Expectations
Don't Expect Perfection

https://unsplash.com/photos/QR_vT8_hBZM

Bad Naive Math

my users expect 99.0%

so my webserver should be 99.9%

so my database should be 99.99%

so my infrastructure should be 99.999%

… but what if i have more layers? 🤯
https://unsplash.com/photos/3kZpELkaxHc

Proprietary + Confidential

Component-level reliability:

- solid base (big cold building, heavy
iron, redundant disks/net/power)

- each component up as much as
possible

- total availability as goal
- "scale up"

Scalable reliability:

- less-reliable, cost-effective base
- "warehouse scale" (many

machines)
- software improves availability
- aggregate availability as goal
- "scale out"

Recall

Abstract Examples
03

Confidential + Proprietary

99.9% 99.9% 99.9% 99.9%

Service A Service B Service C Service DClient

from Steve McGhee’s SLO Conf 2021 Talk

https://youtu.be/-lHPDx90Ppg
https://youtu.be/-lHPDx90Ppg

Confidential + Proprietary

99.9% 99.9% 99.9% 99.9%

0.999 x 0.999 x 0.999 x 0.999

99.6% SLO

Service A Service B Service C Service DClient

Intersection (or serial)

from Steve McGhee’s SLO Conf 2021 Talk

https://youtu.be/-lHPDx90Ppg
https://youtu.be/-lHPDx90Ppg

Confidential + Proprietary

99.9%

99.9%

99.9%

99.9%

Service A

Service A

Service A

Service A

Client

from Steve McGhee’s SLO Conf 2021 Talk

https://youtu.be/-lHPDx90Ppg
https://youtu.be/-lHPDx90Ppg

Confidential + Proprietary

99.9%

99.9%

99.9%

99.9%

Service A

Service A

Service A

Service A

Client

1 - (0.001) 4

99.999999999% SLO

or 11 nines

Union (aka parallel)

This is strictly mathematical and does not include any dependent
variables like network, LBs, capacity planning, connectivity, and
other dependent services

Confidential + Proprietary

99.99%
99.5%

99.95%

Regional
LB

GKE 1 Zonal
(Region1 ZoneA)

Service A CloudSQLClient

GCP SLAs

0.9999 x 0.995 x 0.9995

99.44% LIMIT

Archetype 2.1 Single zonal GKE cluster with Cloud SQL

https://cloud.google.com/terms/sla

Confidential + Proprietary

99.99%

99.95%Regional
LB

GKE 1 Zonal
(Region1 Zone A)

Service A
CloudSQL

Zone A

Client

GCP SLAs

99.5%

GKE 2 Zonal
(Region1 Zone B)

Service A
99.5%

CloudSQL
Zone B

99.95%

1 - (0.005) 3 = 99.9999875% 1 - (0.0005) 2
= 99.999975%

0.9999 x 0.999999875 x 0.99999975
99.99% LIMIT

GKE 3 Zonal
(Region1 Zone C)

Service A
99.5%

Archetype 3.1 Multi Zonal with Cloud SQL HA

https://cloud.google.com/terms/sla

Confidential + Proprietary

99.99%

GKE 1 Zonal
(Region1 Zone A)

Service A
CloudSQL
Region 1
Zone A

Client

GCP SLAs

GKE 2 Zonal
(Region1 Zone B)

Service A

CloudSQL
Region 1
Zone B

1 - (0.005) 6 = ~1
1 - (0.0005) 4

= ~1

0.9999 x ~1 x ~1
99.99% LIMIT

GKE 3 Zonal
(Region1 Zone C)

Service A

GKE 4 Zonal
(Region2 Zone A)

Service A

GKE 5 Zonal
(Region2 Zone B)

Service A

GKE 6 Zonal
(Region2 Zone C)

Service A

CloudSQL
Region 2
Zone A

CloudSQL
Region 2
Zone B

Reg
LB

Reg
LB

Cloud
DNS

Archetype 3.2 Active Passive Regions with Cloud SQL HA

https://cloud.google.com/terms/sla

Confidential + Proprietary

99.99%

GCLB

GKE 1 Zonal
(Region1 Zone A)

Service A

Spanner
Multi

regional
Client

GCP SLAs

GKE 2 Zonal
(Region1 Zone B)

Service A

1 - (0.005) 6 = ~1

0.9999 x 1 x 0.99999
99.99% LIMIT

GKE 3 Zonal
(Region1 Zone C)

Service A

GKE 4 Zonal
(Region2 Zone A)

Service A

GKE 5 Zonal
(Region2 Zone B)

Service A

GKE 6 Zonal
(Region2 Zone C)

Service A

99.999%

Archetype 5.2 Global with Cloud Spanner (Multi regional)

https://cloud.google.com/terms/sla

Philosophy Again
04

SLO Calculus

count ~ "num-errors.service"

rate() = SLI

ratio-rate() = SLO

ratio-rate() over time = budget

budget "burn" over time = alert

Some Actual Examples
05

Confidential + Proprietary

Tired: Availability & Latency

Everyone talks about Availability: is it up?

Sometimes we talk about Latency: is it fast?

Sometimes we even combine them. Ooh, Fancy!

Confidential + Proprietary

Wired: Freshness, Coverage, Skew, Duration

Those were: Request Driven Services

What about:

- Data Processing
- Scheduled Execution
- Using ML models ?!

How can SLOs help here?

Need to define good and total

Confidential + Proprietary

Data Processing: Freshness

The proportion of valid data updated more recently than a threshold.

Examples:

- Generating map tiles in a game
- "X items in stock" in an ecommerce store

- "The percentage of views that used stock information that was refreshed within the last minute."

Generally:

good = datetime_served - datetime_built < threshold

Confidential + Proprietary

Data Processing: Coverage

The proportion of valid data processed successfully.

If your system processes many inputs, but drops some for various reasons
(malformed, empty, unpaid, resource constrained), Coverage can help you assess the
state of the whole system.

good = valid_records - num_processed < threshold

Measure this per "bucket" time period to see how coverage changes over time.

Confidential + Proprietary

The time difference between when the job should have started, and when it did

Skew tells you if a job (like cron) runs early, late, or on-time. It can have a negative or
positive value.

good = time_started - time_scheduled < max_threshold

and

time_started - time_scheduled > min_threshold

Setting expected upper/lower boundaries provides a method for knowing what is
considered "good" and making decisions from that.

Scheduled Execution: Skew

Confidential + Proprietary

The time difference between when the job should have completed and when it was
expected to complete by.

Duration helps us understand if a large system is "fast enough" as a whole. This can
even catch never-ending jobs, if done correctly.

good = (time_ended or NOW) - time_started < max_expected

and

time_ended - time_started > min_expected

Scheduled Execution: Duration

Confidential + Proprietary

What about Durability?

Durability is confusing, as it tends to have SO MANY NINES (11!).

This is because it measures a predicted distribution of potential physical failure
modes over time. By adding physical replicas and encoding schemes for storage,
you can model, understand, and improve the durability.

This is very different. Try not to compare this directly.

See: pg 203-208 of Implementing Service Level Objectives by Alex Hidalgo for more
math.

https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target

https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target

Confidential + Proprietary

More SLO Terminology

latency < 150ms, >95% per quarter:

● The Service is usually some sort of RPC request,
● The Goal is 95%,
● The Criteria is "latency < 150ms",
● The Period is "quarter".
● The Performance over the Period of the last quarter would be the "number of requests in the last quarter with

latency < 150ms" divided by "the number of requests in the last quarter".
● The Error Budget is 100% - 95% = 5%.
● This SLO will be Met for the Period of 2016-Q1 if the Performance for that Period is greater than the Goal of

95%.

Confidential + Proprietary

Proprietary + Confidentialevent-based vs time-based ?

Confidential + Proprietary

Confidential + Proprietary

event-based time-based

rolling-window calendar-window

- N events ~= traffic
- spikey
- precise

- 86400 sec/day
- ~> 2880 30s windows
- smoother

SAME DATA, DIFFERENT VIEWS

- no big resets
- budget "heals" (?) 30d after errors
-

- monthly reset
- hides last-day badness (ok?)

Consider consequences, sprints,
planning cycles

(14d? 30d? 31d?)

Confidential + Proprietary

slow-burn fast-burn

tactics,
consequences

strategy,
planning

- ~10% of 30d budget burned in 1h
- "do something now"
- O(hours)

- if this keeps up …
- "file a bug/ticket"
- O(days)

- release freeze
- only reliability changes (?)
- …
- "turn the knob" towards reliability
- next sprint, next release

- size of team ~= amount of work (beware toil tax)
- invest in reliability to slow interrupts
- it never ends :)

Wrap up, Links
06

Confidential + Proprietary

Just write a plan:

- SLI X indicates user …
- SLO Y was chosen because …
- when it burns by …
- we will …
- because we believe …

make it public

revisit the plan quarterly/annually

or when it doesn't make sense anymore.

Confidential + Proprietary

Odysseus and the Sirens ● Odysseus and crew have a plan on how to
handle disaster

● During the disaster, they stick to the plan, even
though The Boss told them not to.

● This is known as a Ulysses Pact

➔ When defining SLOs, you're deciding what is a disaster and
what isn't, and what to do about it.

➔ If it isn't a disaster, don't treat it like one.

➔ If it is a disaster, stick to the plan. (note: have a plan)
Focus on bringing the service "back into SLO"

➔ practice your plan. run drills, develop tools

https://www.theoi.com/Pontios/Seirenes.html

Confidential + Proprietary

Parting Shots

SLOs are a measure of a system, not components. SLOs are an abstraction.

Not a replacement for the deep understanding needed for diagnosis.

Abstractions provide consistent understanding of behavior through change.

This is good.

Implementation can change, side-effects can come and go.

SLOs persist.

Confidential + Proprietary

Resources

https://sre.google/resources/practices-and-processes/art-of-slos/
https://www.alex-hidalgo.com/the-slo-book
https://sre.google/sre-book/service-level-objectives/

https://www.nobl9.com/
https://docs.datadoghq.com/service_management/service_level_objectives/
https://docs.newrelic.com/docs/service-level-management/intro-slm/

https://github.com/google/slo-generator
https://cloud.google.com/monitoring/slo-monitoring

https://www.youtube.com/watch?v=OdLnC8sjPCI

https://sre.google/resources/practices-and-processes/art-of-slos/
https://www.alex-hidalgo.com/the-slo-book
https://sre.google/sre-book/service-level-objectives/
https://www.nobl9.com/
https://docs.datadoghq.com/service_management/service_level_objectives/
https://docs.newrelic.com/docs/service-level-management/intro-slm/
https://github.com/google/slo-generator
https://cloud.google.com/monitoring/slo-monitoring
https://www.youtube.com/watch?v=OdLnC8sjPCI

Q&A
07

Confidential + Proprietary

Appendix

Confidential + Proprietary

Error budget burn-down chart

Percent of Service Unavailable

0.1% 1% 10% 100%

Availability SLO

90% Forever Forever Forever 9d

99% Forever Forever 9d 21h

99.9% Forever 9d 21h 2h

99.99% 9d 21h 2h 12m

99.999% 21h 2h 12m 1m

Confidential + Proprietary

DR Math

"Holdback" = 1/N

As you increase N:

DCs can each run "hotter" now (better
utilization)

Better global spread should also result in
better latency (faster experience) to global
users

If each DC is totally independent, your
availability "nines" improve dramatically
(and are actually capped by the
loadbalancer/network),

DC1 DC2 DC3 DC4

Confidential + Proprietary

Zeno's 2nd Paradox ● A story to describe asymptotes
● Seemingly obvious setup (demigod vs animal)
● Subtle questions arise (how close can we

measure?

➔ Helps us understand the
subtlety of "nines"

➔ i.e. 99.99% is very close to
100%, unless you look closely

➔ Each leg of the race gives us
diminishing returns
– just like more 9s

"Achilles and the Tortoise"

ibmathsresources.com/2018/11/30
 /zenos-paradox-achilles-and-the-tortoise-2/

Confidential + Proprietary

Serial Services

Load Balancer

svc A

svc B

svc C

99.9%

99.9%

99.9%

99.9%svc D

What if you have services that depend on each other,
in a "straight line"?

3 nines @ depth 4 gets us "2.6" nines:
(0.999, 0.999, 0.999, 0.999) = 0.999^4 = 99.6%

SLO^depth

So what? Your architecture choices can
have more of an impact than the SLOs of
your dependencies.

Confidential + Proprietary

Redundant Services!

What if you have independent copies of the same service? As
long as one is up, you're happy! Now we're talking!

Now your outage only has the probability of all N services failing
at the same time. (ahem: presuming automatic retries)
Our failure_ratio is just: 1  SLO

Given 4 dice, you have to roll four ones in order to fail.
The odds of this are: 1/6  1/6  1/6  1/6 = 0.00077

1 - failure_ratio ^ redundancy

Load Balancer

svc A svc A' svc A'' svc
A'''

99.9% 99.9% 99.9% 99.9%

1 - (0.1% * 0.1% * 0.1% * 0.1%) =
1 - .001^4 = 99.99999999...% (12.6 nines!)

